THE KALMAN FILTER: OPTIMAL STATE ESTIMATION IN THE PRESENCE OF NOISE — lectures 1 and 2

John M. Finn

9th February 2004

UQWG seminar, Feb 5, 2004

Outline

- Counting statistics with equal σ_i by least squares approach. Minimum variance. Recursive nature.
- Counting statistics with unequal σ_i . Least squares, minimum variance approach. Recursive nature.
- Linear process with measurement noise only estimating initial vs. current state.
- Random walk with zero measurement noise. Estimating the initial position.
- Random walk, estimating the current position.
- Random walk with measurement noise, estimating the current state.
- Preview of next lecture.

Counting statistics; sample mean and variance – equal σ_i^2

$$x_i = x_0 + \xi_i \quad y_i = x_i,$$

 $<\xi_i>=0$, $<\xi_i\xi_j>=\sigma_i^2\delta_{ij}=\delta_{ij}$ and gaussian distribution by Bayes' theorem

$$f(x_0(n)|y_1,...,y_n) \propto f(y_1,...,y_n|x_0(n)) \times \frac{prior}{normalization}$$

$$\sim \prod_{i=1}^{n} e^{-\frac{1}{2\sigma_i^2} [x_i - x_0(n)]^2} = e^{-\sum_{i=1}^{n} \frac{1}{2\sigma_i^2} [x_i - x_0(n)]^2}$$

Maximum likelihood

$$\chi^2(n) = -\ln f = \frac{1}{\sigma^2} \sum_{i=1}^n \frac{[x_i - x_0(n)]^2}{2}.$$

$$\partial \chi^2/x_0(n) = 0 \Rightarrow$$
state estimate

$$x_0(n) = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

The variance of the estimate at this stage is (uncorrelated)

$$V(n) = \sigma^{2}(n) = \sum_{i=1}^{n} \sigma_{i}^{2} (\partial x_{0}(n) / \partial x_{i})^{2} = \frac{1}{n},$$

y and x0 vs time

Minimum variance approach

$$x_0(n) = \sum_{i=1}^n \rho_i x_i,$$

with $\sum_{i=1}^{n} \rho_i = 1$, $\sigma^2 = 1$

$$V(n) = \sum_{i=1}^{n} \rho_i^2 \quad V^*(n) = \sum_{i=1}^{n} \rho_i^2 - \lambda \sum_{i=1}^{n} \rho_i$$

 $\partial V(n)/\partial \rho_k = 0 \Rightarrow$

$$\rho_k = \frac{\lambda}{2},$$

or $ho_k=1/n$ for all $k-x_0(n)=rac{1}{n}\sum_{i=1}^n x_i$ V(n)=1/n

Recursive Kalman filter form

$$(n+1)x_0(n+1) = \sum_{i=1}^n x_i + x_{n+1}$$
$$x_0(n+1) = \frac{n}{n+1}x_0(n) + \frac{1}{n+1}x_{n+1}$$

or

$$x_0(n+1) = x_0(n) + K_n[x_{n+1} - x_0(n)],$$

Kalman gain K_n

$$K_n = \frac{1}{n+1}.$$

$$\frac{1}{K_n} = \frac{1}{K_{n-1}} + 1 \quad or \quad K_n = \frac{K_{n-1}}{1 + K_{n-1}}$$

$$K_n = V(n+1),$$

Counting statistics for unequal σ_i^2

Uncorrelated but different confidence: $<\xi_i\xi_j>=\sigma_i^2\delta_{ij}$

$$\chi^2 = \sum_{i=1}^n \frac{[x_i - x_0(n)]^2}{2\sigma_i^2}$$

$$\partial W/\partial x_0(n) = 0 \Rightarrow$$

$$x_0(n) = \frac{\sum_{i=1}^n x_i / \sigma_i^2}{\sum_{i=1}^n 1 / \sigma_i^2}.$$

Example: $(x_1, x_2, x_3), x_4$

Take
$$z_1=(x_1+x_2+x_3)/3,\,z_2=x_4,\,\,\sigma_1^2=1/3,\,\sigma_2^2=1$$

Then
$$x_0(4) = \left(z_1/\sigma_1^2 + z_2/\sigma_2^2\right) / \left(1/\sigma_1^2 + 1/\sigma_2^2\right)$$

$$=(x_1+x_2+x_3+x_4)/4$$

y and x0 vs time

y and x0 vs time

$$V(n) = \frac{1}{\sum_{i=1}^{n} 1/\sigma_i^2},$$

Again, take

$$x_0(n) = \sum_{i=1}^n \rho_i x_i,$$

with $\sum_{i=1}^{n} \rho_i = 1$

$$V^*(n) = \sum_{i=1}^{n} \sigma_i^2 \rho_i^2 - \lambda \sum_{i=1}^{n} \rho_i$$

$$\rho_k = \frac{\lambda}{2\sigma_k^2} = \frac{1/\sigma_k^2}{\sum_i 1/\sigma_i^2}.$$

Same.

Recursive Kalman filter form for unequal σ_i^2

$$x_0(n+1) = x_0(n) + K_n[x_{n+1} - x_0(n)]$$

with

$$K_n = \frac{1}{\sigma_{n+1}^2 \left(\sum_{i=1}^n \frac{1}{\sigma_i^2} + \frac{1}{\sigma_{n+1}^2}\right)} = \frac{1}{\sigma_{n+1}^2 \sum_{i=1}^n \frac{1}{\sigma_i^2} + 1}.$$

$$K_n = V(n+1)/\sigma_{n+1}^2$$
, and

$$\frac{1}{K_n} = \left(\frac{\sigma_{n+1}^2}{\sigma_n^2}\right) \frac{1}{K_{n-1}} + 1 \quad \text{or} \quad K_n = \frac{K_{n-1}}{K_{n-1} + \sigma_{n+1}^2/\sigma_n^2},$$

The recursion in terms of the variance

$$\frac{1}{V(n+1)} = \frac{1}{V(n)} + \frac{1}{\sigma_{n+1}^2}.$$

with $K_n = V(n+1)/\sigma_{n+1}^2 \ K_n$ tends to decrease with n (more data)

If $\sigma_{n+1}^2 < \sigma_n^2$, then K_n will be larger than if $\sigma_{n+1}^2 > \sigma_n^2$

One dimensional example of estimating the initial state and the current state

Simple stochastic system with measurement noise

$$x_{k+1} = \gamma x_k,$$

$$y_k = x_k + \eta_k$$
.

 $<\eta_k\eta_l>=\delta_{kl}$

$$\chi^2 = \frac{1}{2} \sum_{k=1}^{n} (\gamma^k x_0 - y_k)^2,$$

 $\partial \chi^2/\partial x_0 = 0$ gives

$$x_0(n) = \frac{\sum_{k=1}^n \gamma^k y_k}{\sum_{k=1}^n \gamma^{2k}}.$$

 $\gamma > 1...$ weighted toward recent results, $\gamma < 1...$ weighted toward initial results. Recursive form

$$x_0(n+1) = x_0(n) + \frac{\gamma^{n+1}}{\sum_{k=1}^n \gamma^{2k} + \gamma^{2n+2}} (y_{n+1} - \gamma^{n+1} x_0(n)).$$

An estimate of x_n rather than x_0 .

$$\chi^2 = \frac{1}{2} \sum_{k=1}^{n} (\gamma^{k-n} x_n - y_k)^2,$$

$$x_n(n) = \frac{\sum_{k=1}^n \gamma^{k-n} y_k}{\sum_{k=1}^n \gamma^{2k-2n}} = \gamma^n x_0(n),$$

Exactly what you might guess. Recursive form:

$$x_{n+1}(n+1) = \gamma x_n(n) + \frac{1}{\sum_{k=1}^n \gamma^{2k-2n-2} + 1} (y_{n+1} - \gamma x_n(n)).$$

Notice
$$K_n^{x_n(n)} = \gamma^{n+1} K_n^{x_0(n)}$$
.

y and x0 vs time

y and x0 vs time

Random walk with zero measurement error – estimating the *initial* position

Counting statistics, with only measurement noise, is:

$$x_{k+1} = x_k,$$

$$y_k = x_k + \eta_k$$

Random walk problem (Wiener process, Brownian motion), with only dynamical noise:

$$x_{k+1} = x_k + \xi_k,$$

$$y_k = x_k$$
.

 $<\xi_k>=0$, $<\xi_k\xi_k>=\sigma_0^2\delta_{kl}$. To estimate the initial position. Ship wrecks at x_0 – to find the ship.

$$y_k = x_0 + \sum_{i=0}^{k-1} \xi_i = x_0 + \zeta_k.$$

$$\zeta_k$$
 has $<\zeta_k>=0$

And $n \times n$ covariance matrix

$$C_{kl} = \langle \zeta_k \zeta_l \rangle = C_{kl} = \langle \zeta_k \zeta_l \rangle$$

$$= \sum_{i=0}^k \sum_{j=0}^l \langle \xi_i \xi_j \rangle = \sigma_0^2 \min(k, l),$$

i.e.

Least squares in terms of the inverse of the covariance matrix $\mathsf{D} = \mathsf{C}^{-1}$

$$\chi^2 = \frac{1}{2} \sum_{k=1}^n \sum_{l=1}^n \zeta_k D_{kl} \zeta_l = \frac{1}{2} \sum_{k=1}^n \sum_{l=1}^n (y_k - x_0) D_{kl} (y_l - x_0).$$

$$\partial \chi^2 / \partial x_0 = 0 \implies$$

$$x_0(n) = \frac{\sum_{k=1}^n \sum_{l=1}^n D_{kl} y_l}{\sum_{k=1}^n \sum_{l=1}^n D_{kl}},$$

$$\mathsf{D} = \sigma_0^{-2} \left[\begin{array}{ccccccc} 2 & -1 & 0 & 0 & \dots \\ -1 & 2 & -1 & 0 & \dots \\ 0 & -1 & 2 & -1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & -1 & 1 \end{array} \right].$$

In the estimate, the value of σ_0^2 cancels.

$$\sum_{kl} D_{kl} = 1, \ \sum_{kl} D_{kl} y_l = y_1 \quad x_0(n) = y_1$$

$$V(n) = \sum_{ij} \frac{\partial x_0(n)}{\partial y_i} C_{ij} \frac{\partial x_0(n)}{\partial y_j} = C_{11} = 1.$$

Recursive $x_0(n+1)=x_0(n)+K_n[y_{n+1}-x_0(n)]$ with $K_n=0$.

Try minimum variance again

$$x_0(n) = \sum_{i=1}^n \rho_i y_i$$

$$V^*(n) = \sum_{ij} C_{ij} \rho_i \rho_j - \lambda \sum_i \rho_i;$$

$$\partial V(n) / \partial \rho_k = 0 \quad \Rightarrow$$

$$\sum_j C_{kj} \rho_j = \lambda / 2$$

$$\rho_i = \frac{\lambda}{2} \sum_j D_{ij} \text{ or } \begin{pmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_n \end{pmatrix} = \frac{\lambda}{2} D \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}.$$

$$\frac{\lambda}{2} = \frac{1}{\sum_{ij} D_{ij}}; \quad \rho_i = \frac{\sum_j D_{ij}}{\sum_{ij} D_{ij}}.$$

$$\begin{pmatrix} \rho_1 \\ \rho_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

$$x_0(n) = y_1$$

 $V(n) = \sum_{ij} C_{ij} \rho_i \rho_j = C_{11} = 1$. A third approach – next lecture.

Random walk with zero measurement noise – estimating the *current* position

$$x_{k+1} = x_k + \xi_k,$$
$$y_k = x_k.$$

Ship wrecks at x_0 , but we wish to find the position of the *survivor*.

$$y_k = x_n - \sum_{i=k}^{n-1} \xi_i = x_n(n) - \zeta_k,$$

 $<\xi_i> = 0, <\xi_i\xi_j> = \sigma_0^2 \delta_{ij} \qquad \zeta_k^{new} = \zeta_n^{old} - \zeta_k^{old}.$

$$\chi^2 = \frac{1}{2} \sum_{k=1}^{n-1} \sum_{l=1}^{n-1} \zeta_k D_{kl} \zeta_l = \frac{1}{2} \sum_{k=1}^{n-1} \sum_{l=1}^{n-1} (x_n - y_k) D_{kl} (x_n - y_l).$$

$$C_{kl} = <\zeta_k \zeta_l > = \sum_{i=k}^{n-1} \sum_{j=l}^{n-1} <\xi_i \xi_j >$$

$$= \sigma_0^2 \sum_{i=k}^{n-1} \sum_{j=l}^{n-1} \delta_{ij} = \sigma_0^2 [n - \max(k, l)],$$

$$C = \sigma_0^2 \begin{bmatrix} n-1 & n-2 & n-3 & \cdots & 1\\ n-2 & n-2 & n-3 & \cdots & 1\\ n-3 & n-3 & n-3 & \cdots & 1\\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}.$$

$$D = \sigma_0^{-2} \begin{bmatrix} 1 & -1 & 0 & 0 & \dots\\ -1 & 2 & -1 & 0 & \dots\\ 0 & -1 & 2 & -1 & \dots\\ \vdots & \vdots & \vdots & \vdots & \ddots\\ 0 & 0 & 0 & -1 & 2 \end{bmatrix},$$

$$x_n(n) = y_{n-1},$$

$$V(n) = 1.$$

Recursive $x_0(n+1) = x_0(n) + K_n[y_n - x_0(n)]$ with $K_n = 1$ now.

Random walk with measurement noise – estimating the current position

Estimating the current position of the shipwreck survivor

$$x_{k+1} = x_k + \xi_k,$$

$$y_k = x_k + \eta_k.$$

Solve for y_k in terms of x_n :

$$y_k = x_n - \sum_{i=k}^{n-1} \xi_i + \eta_k = x_n - \zeta_k + \eta_k.$$

$$\chi^2 = \frac{1}{2} \sum_{k=1}^{n} \sum_{l=1}^{n} (x_n - y_k) D_{kl}(x_n - y_l),$$

D = C⁻¹, with $C_{kl}=<(-\zeta_k+\eta_k)(-\zeta_l+\eta_l)>$. Again using $<\xi_k\xi_l>=\sigma_0^2\delta_{kl},<\eta_k\eta_l>=\sigma_1^2\delta_{kl},<\zeta_k\eta_l>=0$ we have, for k=1,...,m

$$C_{kl}^{(n)} = \sigma_0^2[n - \max(k, l)] + \sigma_1^2 \delta_{kl},$$

or

$$\mathsf{C}^{(n)} = \sigma_0^2 \begin{bmatrix} n-1 & n-2 & n-3 & \cdots & 0 \\ n-2 & n-2 & n-3 & \cdots & 0 \\ n-3 & n-3 & n-3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$+\sigma_1^2 \left[egin{array}{ccccccc} 1 & 0 & 0 & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ \vdots & \vdots & \vdots & \ddots & 0 \ 0 & 0 & 0 & \cdots & 1 \ \end{array}
ight]$$

$$= \sigma_0^2 \mathsf{C}^{(0,n)} + \sigma_1^2 \mathsf{C}^{(1,n)} = \mathsf{C}^{(n)}.$$

NEXT LECTURE

- Probabilistic (Bayesian) approach
- Application to higher dimension, with dynamical and measurement noise
- Application to control theory
- Application to nonlinear problems the extended Kalman filter

Outline - Second Lecture

- Review of previous lecture
- ullet Estimation of M correlated variables. Alternate method based on the trace of the covariance matrix.
- Alternate method for the random walk with zero measurement noise. Estimating the initial or current position
- Probabilistic (Bayesian) approach
- Alternate method, for random walk with measurement noise added
- Higher dimensional stochastic process with measurement noise
- Application to control theory the separation theorem
- Nonlinear stochastic systems the Extended Kalman Filter

REVIEW: ESTIMATING A SCALAR VARIABLE

Measurement of a scalar – measurement noise but no dynamical noise

$$\chi^2 = \sum_{i=1}^n \frac{[x_i - x_0(n)]^2}{2\sigma_i^2}$$

$$x_0(n) = \frac{\sum_{i=1}^{n} x_i / \sigma_i^2}{\sum_{i=1}^{n} 1 / \sigma_i^2}$$

Minimum variance form $x_0(n) = \sum_{i=1}^n \rho_i x_i$, with

$$V^{*}(n) = \sum_{i=1}^{n} \sigma_{i}^{2} \rho_{i}^{2} - \lambda \sum_{i=1}^{n} \rho_{i}$$

Recursive form: $x_0(n+1) = x_0(n) + K_n[x_{n+1} - x_0(n)]$ Innovation, Kalman gain (matrix)

y and x0 vs time

y and x0 vs time

ESTIMATION OF A CORRELATED HIGHER DIMENSIONAL VARIABLE

$$\mathbf{x}^i = \mathbf{x}_0 + \overrightarrow{\xi}^i$$

with
$$\langle \overrightarrow{\xi}^i \rangle = 0 \langle \xi_k^i \xi_l^j \rangle = \delta_{ij} C_{kl}^i$$
.

$$\chi^2 = \frac{1}{2} \sum_{i=1}^n (\overrightarrow{\xi}^i, \mathsf{D}^i \overrightarrow{\xi}^i)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \left((\mathbf{x}^{i} - \mathbf{x}_{0}), \mathsf{D}^{i} (\mathbf{x}^{i} - \mathbf{x}_{0}) \right)$$

where $\mathsf{D}^i = (\mathsf{C}^i)^{-1}$.

$$\mathbf{x}_0 = \left(\sum_{i=1}^n \mathsf{D}^i\right)^{-1} \sum_{i=1}^n \mathsf{D}^i \mathbf{x}^i \tag{1}$$

Note: this gives sample mean if all D_i are equal.

Also, if D_i are diagonal, this gives the weighted sample mean.

MINIMUM VARIANCE ALTERNATIVE - TRACE OF THE COVARIANCE MATRIX

$$\mathbf{x}_0(n) = \sum_{i=1}^n \mathsf{A}^i \mathbf{x}^i \qquad \qquad \sum_{i=1}^n \mathsf{A}^i = \mathsf{I}$$

 $C(\overrightarrow{x}_0)_{kl} = <\delta x_{0,k}\delta x_{0,l}>$. Its trace is

$$T = <\sum_{k} \delta x_{0,k} \delta x_{0,k} > = <|\delta \mathbf{x}_0|^2 >$$

$$T = \sum_{ijkmn} A_{km}^{i} A_{kn}^{j} < \xi_{m}^{i} \xi_{n}^{j} > = \sum_{ikmn} A_{km}^{i} A_{kn}^{i} C_{mn}^{i}$$

$$T = trace \sum_{i} \left(\mathsf{ACA}^{T}
ight)^{i}$$
 . Minimize T

$$T^* = \sum_{ikmn} A_{km}^i A_{kn}^i C_{mn}^i - \sum_{mn} \lambda_{mn} \left(\sum_i A_{mn}^i - \delta_{mn} \right)$$

Differentiating with respect to $A^i_{ab} \; \partial T^*/\partial A^i_{ab} = 0$

$$2A_{an}^iC_{nb}^i=\lambda_{ab} \qquad \mathsf{A}=\frac{1}{2}\mathsf{LD} \qquad \mathsf{L}=2\left(\sum_iD^i\right)^{-1}$$

$$\mathsf{A}^i {=} \left(\sum_i D^i\right)^{-1} \mathsf{D}^i$$

same as before

$$\mathbf{x}_0 = \left(\sum_{i=1}^n \mathsf{D}^i\right)^{-1} \sum_{i=1}^n \mathsf{D}^i \mathbf{x}^i \tag{2}$$

Random walk, estimating the current state – another alternate

Recall $y_k = x_n - \sum_{i=k}^{n-1} \xi_i = x_n - \zeta_k \dots$

$$\chi^2 = \frac{1}{2} \sum_{k=1}^{n-1} \sum_{l=1}^{n-1} (x_n - y_k) D_{kl}(x_n - y_l)$$
 (3)

$$C = \sigma_0^2 \begin{bmatrix} n-1 & n-2 & n-3 & \cdots & 1\\ n-2 & n-2 & n-3 & \cdots & 1\\ n-3 & n-3 & n-3 & \cdots & 1\\ \vdots & \vdots & \vdots & \ddots & 1\\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$
(4)

Alternatively,

$$\chi^2 = \frac{1}{2\sigma_0^2} \sum_{k=1}^{n-1} \xi_i^2$$

$$= \frac{1}{2\sigma_0^2} \left[(y_2 - y_1)^2 + \dots + (y_{n-1} - y_{n-2})^2 + (x_n - y_{n-1})^2 \right]$$

Obviously gives $x_n(n)=y_{n-1}$. $(\xi_0,...,\xi_{n-1})\to (\zeta_0,...,\zeta_{n-1})$ - change of variable.

PROBABILISTIC (BAYESIAN) APPROACH – counting statistics

Bayes'

$$f(x_0|y_1) \propto f(y_1|x_0) \propto e^{-\frac{(y_1-x_0)^2}{2\sigma_1^2}}$$

$$f(x_0|y_1, y_2) \propto f(y_2|x_0, y_1) f(x_0|y_1)$$

 $f(y_2|x_0, y_1) = f(y_2|x_0)$

$$f(x_0|y_1) \propto f(y_2|x_0)f(y_1|x_0)$$

Similarly $f(x_0|y_1, y_2, ..., y_n) \propto f(y_n|x_0) \cdots f(y_2|x_0) f(y_1|x_0)$

$$\propto e^{-\frac{(y_n-x_0)^2}{2\sigma_n^2}} \cdots e^{-\frac{(y_2-x_0)^2}{2\sigma_2^2}} e^{-\frac{(y_1-x_0)^2}{2\sigma_1^2}}$$

Likelihood
$$\chi^2 = -\ln f \propto \sum_{k=1}^n \frac{(y_k - x_0)^2}{2\sigma_k^2}$$
 ... SAME

RANDOM WALK

$$f(x_0|y_1) \propto f(y_1|x_0) \propto e^{-\frac{(y_1-x_0)^2}{2\sigma_1^2}}$$

$$f(x_0|y_1,y_2) \propto f(y_2|x_0,y_1)f(x_0|y_1)$$

$$\propto f(y_2|y_1)f(x_0|y_1) \ (Markov) \ \propto f(y_2|y_1)f(y_1|x_0)$$

$$f(x_0|y_1, y_2, ..., y_n) \propto f(y_n|y_{n-1}) \cdots f(y_2|y_1) f(x_0|y_1)$$

$$f \propto e^{-\frac{(y_n - y_{n-1})^2}{2\sigma_{n-1}^2}} \cdots e^{-\frac{(y_2 - y_1)^2}{2\sigma_1^2}} e^{-\frac{(y_1 - x_0)^2}{2\sigma_0^2}}$$

$$\chi^{2} = -\ln f \propto \sum_{k=1}^{n-1} \frac{(y_{k+1} - y_{k})^{2}}{2\sigma_{k}^{2}} + \frac{(y_{1} - \boldsymbol{x}_{0})^{2}}{2\sigma_{0}^{2}}$$

Random walk with measurement noise added – alternate approach

$$x_{k+1} = x_k + \xi_k,$$

$$y_k = x_k + \eta_k.$$

Then $y_{k+1}-y_k=\xi_k+\eta_{k+1}-\eta_k$ and

$$\chi^2 = \sum_{k=1}^{n-1} \sum_{l=1}^{n-1} (y_{k+1} - y_k) D_{kl} (y_{l+1} - y_l) \qquad \mathbf{y_n} \to \mathbf{x_n}(\mathbf{n})$$

with
$$C_{kl}=<(\xi_k+\eta_{k+1}-\eta_k)(\xi_l+\eta_{l+1}-\eta_l)>$$
 tridiagonal C =

$$\sigma_{\eta}^{2} \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots \\ 0 & -1 & 2 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \cdots & 0 & 0 & -1 & 2 \end{bmatrix} + \sigma_{\xi^{2}} \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Minimize with respect to $x_n(n)$:

$$\left(\mathbf{x_n(n)} - y_{n-1}\right) D_{n-1,n-1} + \sum_{k=1}^{n-2} D_{n-1,k} \left(y_{k+1} - y_k\right) = 0$$

Limit 1: no measurement noise $\sigma_\eta^2=0$... $\mathsf{C}=\sigma_\xi^2\mathsf{I}$ or $\mathsf{D}=\sigma_\xi^{-2}\mathsf{I}$ $\mathbf{x}_n(\mathbf{n})=y_{n-1}$

Limit 2: no dynamical noise $\sigma_{\eta}^2=0$...

$$\mathsf{C} = \sigma_{\eta}^2 \left[\begin{array}{cccccc} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots \\ 0 & -1 & 2 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \cdots & 0 & 0 & -1 & 2 \end{array} \right]$$

gives sample mean

$$x_n(n) = \frac{1}{n-1} \sum_{k=1}^{n-1} y_k$$

Recall one dimensional system with measurement noise

Recall 1D system with measurement noise $<\eta_k\eta_l>=\delta_{kl}$

$$x_{k+1} = \gamma x_k,$$

$$y_k = x_k + \eta_k.$$

$$x_0(n+1) = x_0(n) + \frac{\gamma^{n+1}}{\sum_{k=1}^n \gamma^{2k} + \gamma^{2n+2}} (y_{n+1} - \gamma^{n+1} x_0(n)).$$

$$x_{n+1}(n+1) = \gamma x_n(n) + \frac{1}{\sum_{k=1}^n \gamma^{2k-2n-2} + 1} (y_{n+1} - \gamma x_n(n)).$$

Estimates
$$x_0(n)$$
 and $x_n(n)=\gamma^n x_0(n)$... $K_n^{x_n(n)}=\gamma^{n+1}K_n^{x_0(n)}$.

Also,
$$V(x_0)=\frac{1}{\sum_{k=1}^n\gamma^{2k}}$$
 $V(x_n)=\frac{\gamma^{2n}}{\sum_{k=1}^n\gamma^{2k}}=\gamma^{2n}V(x_0(n))...$ Recursive

y and x0 vs time

y and x0 vs time

Higher dimensional system with measurement noise - est. for $\mathbf{x}_0(n)$

$$\mathbf{x}_{k+1} = \mathsf{A}_k \mathbf{x}_k \tag{5}$$

with measurement $<\eta_k^i\eta_l^j>=\delta_{ij}\delta_{kl}$

$$\mathbf{y}_k = \mathsf{M}_k \mathbf{x}_k + \overrightarrow{\eta}_k. \tag{6}$$

 $\mathbf{x}_k = \mathsf{U}_{k,0}\mathbf{x}_0 = \mathsf{A}_{k-1}\mathsf{A}_{k-2}...\mathsf{A}_0\mathbf{x}_0$

$$\chi^{2} = \frac{1}{2} \sum_{k=1}^{n} \|\overrightarrow{\eta}_{k}\|^{2} = \frac{1}{2} \sum_{k=1}^{n} \|\mathsf{M}_{k} \mathsf{U}_{k,0} \mathbf{x}_{0} - \mathbf{y}_{k}\|^{2}, \quad (7)$$

$$\mathbf{x}_{0}(n) = \left[\sum_{k=1}^{n} \mathbf{N}_{k,0}^{T} \mathbf{N}_{k,0}\right]^{-1} \sum_{k=1}^{n} \mathbf{N}_{k,0}^{T} \mathbf{y}_{k} \qquad \mathbf{N}_{k,0} \equiv \mathbf{M}_{k} \mathbf{U}_{k,0}.$$
(8)

$$\mathbf{x}_0(n+1) = \mathbf{x}_0(n) + \mathsf{K}_n \left[\mathbf{y}_{n+1} - \mathsf{M}_{n+1} \mathsf{U}_{n+1,0} \mathbf{x}_0(n) \right]$$
 (9)

$$\mathsf{P}_{n+1}^{-1} = \mathsf{P}_n^{-1} + \mathsf{N}_{n+1,0}^T \mathsf{N}_{n+1,0}$$

$$\mathsf{K}_n = \mathsf{P}_{n+1} \mathsf{N}_{n+1,0}^T \qquad \mathsf{C}(x_0(n)) = \mathsf{P}_n$$

 $\mathbf{x}_0(n)$ propagated $n \to n+1$ by $\mathsf{U}_{n+1,0}$

Measurement applied $\mathbf{M}_{n+1}\mathbf{U}_{n+1,0}\mathbf{x}_0(n)$ is best guess for \mathbf{y}_{n+1} before measurement

Higher dimensional system with measurement noise - est. for $\mathbf{x}_n(n)$

$$\chi^2 = \frac{1}{2} \sum_{k=1}^n \eta_k^2 = \frac{1}{2} \sum_{k=1}^n \| \mathbf{M}_k \mathbf{U}_{k,n} \mathbf{x}_n - \mathbf{y}_k \|^2$$

$$\mathbf{x}_{n}(n) = \left[\sum_{k=1}^{n} \mathsf{U}_{0,n}^{T} \mathsf{N}_{k,n}^{T} \mathsf{N}_{k,n} \mathsf{U}_{0,n}\right]^{-1} \sum_{k=1}^{n} \mathsf{U}_{0,n}^{T} \mathsf{N}_{k,n}^{T} \mathbf{y}_{k},$$
(10)

or

$$\mathbf{x}_n(n) = \mathsf{U}_{n,0}\mathbf{x}_0(n) \quad \widetilde{\mathsf{K}}_n = \mathsf{U}_{n+1,0}\mathsf{K}_n$$

$$\mathbf{x}_{n+1}(n+1) = \mathsf{A}_n \mathbf{x}_n(n) + \widetilde{\mathsf{K}}_n \left[\mathbf{y}_{n+1} - \mathsf{M}_{n+1} \mathsf{A}_n \mathbf{x}_n(n) \right], \tag{11}$$

 $\mathbf{x}_n(n)$ is advanced in time $\mathbf{x}_n(n) \to \mathsf{A}_n \mathbf{x}_n(n)$ and the measurement operation M_{n+1} is done. This is the best guess for \mathbf{y}_{n+1} before \mathbf{y}_{n+1} is measured

Continuous time advance, discrete time measurement formulation

$$\frac{d\mathbf{x}}{dt} = \mathsf{A}(t)\mathbf{x} + \overrightarrow{\xi}(t) \qquad \langle \xi_i \xi_j \rangle = \mathsf{C}_0$$

$$\mathbf{y}_k = \mathsf{M}\mathbf{x}_k + \overrightarrow{\eta}_k \qquad \langle \eta_i \eta_j \rangle = \mathsf{C}_1$$

1. Time advance of estimate and covariance between measurements

$$\frac{d\widehat{\mathbf{x}}}{dt} = \mathsf{A}(t)\widehat{\mathbf{x}} \quad \frac{dC}{dt} = \mathsf{AC} + \mathsf{CA}^T + \mathsf{C}_0$$

2. Adjust estimate and covariance at new measurement

$$\begin{aligned} \mathsf{K}_k &= \mathsf{C}^{(-)}(t_k) \mathsf{M}^T \left[\mathsf{M} \mathsf{C}^-(t_k) \mathsf{M}^T + \mathsf{C}_1 \right]^{-1} \\ \mathsf{C}(t_k) &= \left[\mathsf{I} - \mathsf{K}_k \mathsf{M} \right] \mathsf{C}^{(-)}(t_k) \\ \widehat{\mathbf{x}}_k &= \widehat{\mathbf{x}}_k^{(-)} + \mathsf{K}_k \left(\mathbf{y}_k - \mathsf{M} \widehat{\mathbf{x}}_k^{(-)} \right) \end{aligned}$$

 $\widehat{\mathbf{x}}_k^{(-)}$ is the best guess for \mathbf{y}_k at t_k before its measurement; $\mathbf{C}^{(-)}(t_k)$ is the covariance matrix at t_k before measurement of \mathbf{y}_k .

Application to control theory – separation theorem

$$\mathbf{x}_{k+1} = \mathsf{A}_k \mathbf{x}_k + \overrightarrow{\xi}_k + \mathbf{u}_k \tag{12}$$

$$\mathbf{y}_k = \mathsf{M}_k \mathbf{x}_k + \overrightarrow{\eta}_k. \tag{13}$$

Continuum model...

$$\frac{d\mathbf{x}}{dt} = A(t)\mathbf{x} + \overrightarrow{\xi}(t) + \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{x}(t) = \mathsf{M}(t)\mathbf{x}(t) + \overrightarrow{\eta}(t) \text{ special case}$$

Optimal control ⇒ minimizing for example

$$J = \int_0^T \left\{ (\mathbf{x}(t), \mathbf{Q}(t)\mathbf{x}(t)) + (\mathbf{u}(t), \mathbf{R}(t)\mathbf{u}(t)) \right\} dt$$

Minimizing J determines $\mathbf{u}[\mathbf{x}]$ optimally for $\overrightarrow{\xi}(t)=0$. Degree of control vs. cost.

For $\overrightarrow{\xi}(t) \neq 0$ do the following:

- ullet Find optimal control $\mathbf{u}[\mathbf{x}(t),t]$ for $\overrightarrow{\xi}(t)=0$
- ullet Use Kalman filter on $\mathbf{y}(t)$ to determine the optimal estimate $\widehat{\mathbf{x}}(t)$
- Add control $\mathbf{u}(\widehat{\mathbf{x}}(t),t)$ based on estimate to equation $d\mathbf{x}/dt = \dots$
- ✗ Allows one to design controller and estimator independently
- X More general form with measurement noise exists too
- X A similar formulation exists for the discrete system

Extended Kalman Filter – for nonlinear systems

Most real problems (systems and measurements) are nonlinear

$$\frac{d\mathbf{x}}{dt} = \mathbf{a}(\mathbf{x}, t) + \overrightarrow{\xi}(t)$$

$$\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k) + \overrightarrow{\eta}(t)$$

 Advance the estimate between measurements by the nonlinear dynamics

$$d\widehat{\mathbf{x}}/dt = \mathbf{a}(\widehat{\mathbf{x}}, t)$$

Advance the covariance between measurements by

$$d\mathbf{C}/dt = \mathbf{A}(\widehat{\mathbf{x}}, t)\mathbf{C} + \mathbf{C}\mathbf{A}^{T}(\widehat{\mathbf{x}}, t) + \mathbf{C}_{0}$$

with $A_{ij} = \partial a_i/\partial x_j$ LINEARIZE with respect to ${\bf x}$

• Kalman gain

$$\mathbf{K}_{k} = \mathbf{C}^{(-)}(t_{k})\mathbf{M}^{T}(\widehat{\mathbf{x}}_{k}^{(-)}) \times \left[\mathbf{M}(\widehat{\mathbf{x}}_{k}^{(-)})\mathbf{C}^{(-)}(t_{k})\mathbf{M}^{T}(\widehat{\mathbf{x}}_{k}^{(-)}) + \mathbf{C}_{1}\right]^{-1}$$

where $M_{ij}=\partial h_i/\partial x_j..$ LINEARIZE with respect to ${\bf x}$. Covariance similarly

- ullet Update estimate after new data: $\widehat{\mathbf{x}}_k = \widehat{\mathbf{x}}_k^{(-)} + \mathbf{K}_k \left(\mathbf{y}_k \mathbf{h}(\widehat{\mathbf{x}}_k^{(-)}) \right)$
- Caveat: $d\widehat{\mathbf{x}}/dt = \mathbf{a}(\mathbf{x},t) = \mathbf{a}(\widehat{\mathbf{x}},t) + (\mathbf{x}-\widehat{\mathbf{x}}) \cdot \nabla \mathbf{a}(\widehat{\mathbf{x}},t) + \dots$
- Caveat: gaussian statistics remains gaussian only if C remains small –if linearizations hold over the range specified by C
- ullet Caveat: what if the model [i.e. ${f a}({f x},t)$] is known poorly? Model errors

SUMMARY

- Least squares approach
- Recursive least squares. Kalman gain ↔ covariance matrix;
 'innovation'
- Minimum variance minimum trace of the covariance matrix
- Estimating the initial state or the current state

Only measurement noise — initial and current state estimates are related by the dynamics

Only dynamical noise — initial and current state estimates are dominated by nearby data

- ullet Bayesian approach and maximum likelihood ullet least squares
- Higher dimension principles the same (recursion for estimate and covariance matrix; relation with Kalman gain)
- Control theory and the separation theorem

- Extended Kalman Filter advance estimate nonlinearly, covariance matrix by linearized system. Caveats:
 - 1) small covariance for linearization to be accurate ... otherwise not gaussian
 - 2) systematic errors model errors